Directions: Answer the following question(s).

<u>1</u> Vladmir sketches the graph of the function $f(x) = \frac{1}{2}(x+6)^2 - 3$ as shown below.

He then translates this function 11 units to the right and 4 units down to obtain the new function $g(x) = \frac{1}{2}(x - h)^2 + k$. What are the integer values for *h* and *k*?

Use the drop-down menus to choose the correct values of h and k.

Web Only Interaction

Master ID:2115785 Revision:4Rubric:1 Point(s)This is the result of first noting that because $f(x) = (1/2)(x + 6)^2 - 3$ is expressed in vertex form, f(x) has a vertex at (-6, -3).Because g(x) is formed as a result of translating f(x) 11 units to the right and 4 units down, the new vertex is located at (-6 + 11, -3 - 4) or (5, -7). The vertex form of a quadratic equation is given as $g(x) = a(x - h)^2 + k$, where the vertex is given by (h, k).Therefore for g(x), h = 5, and k = -7.Standards:CCSS.Math.Content.HSF-BF.B.3

2 This equation describes function h.

$$h(x) = \frac{1}{2}x - 4$$

The graph of function h is translated 2 units in a negative *y*-direction to form function j. Write an equation to describe function j. Show your work and explain your answer.

Master	ID: 2115767 Revision:	4		
Rubric:	2 Point(s)			
2	The response is correct and complete. A sample 2- point response is shown below. Accept a correct answer with appropriate work and a complete explanation.			
	Sample Correct Answer:			
	To find the equation, subtract 2 from $h(x)$.			
	$j(x) = h(x) - 2 \rightarrow \frac{1}{2}x - 4 - 2 \rightarrow \frac{1}{2}x - 6$			

$$j(x) = \frac{1}{2}x - 0$$

1 The response is partially correct. This level may include a correct answer with insufficient work or an insufficient explanation, or an incorrect answer based on a minor error.

0 The response is incorrect or there is no response.

Standards:

CCSS.Math.Content.HSF-BF.B.3

Directions: Answer the following question(s).

- 3 Pedro drew the graph of $y = 4(x 7)^2 + 3$. How should he transform that graph to produce the graph of $y = 4(x - 12)^2 + 3$?
- A. He should shift it 5 units to the left.
- B. He should shift it 5 units down.
- C. He should shift it 5 units up.
- D. He should shift it 5 units to the right.

Master ID:		08950 Revision:	3		
Correct:)			
Rationale:					
А.	A. this shift produces the graph of $y = 4(x - 2)^2$				
	+ 3.				
B. This shift produces the graph of $y = 4(x)$			7)2		
	- 2.				
C. This answer produces the graph of $y = 4(x)$					
	7) ² + 8.				
D.	Changing -7 to	-12 in this equation shifts	the		
	graph of the par	abola 5 units to the right.			
C 1	1				

Standards:

CCSS.Math.Content.HSF-BF.B.3

4 Which equation represents a parabola with the same vertex as $y = 4(x-5)^2 + 20$ but that opens in the opposite direction?

A.
$$y = -4(x+5)^2 - 20$$

B. $y = -4(x-5)^2 + 20$

C.
$$y = 4(x+5)^2 - 20$$

D.
$$y = 4(x+5)^2 + 20$$

Master	ID: 308948 Revision:	3				
Correc	t: B					
Ration	ale:					
A.	The -4 inverts the parabola, but adjusting					
	the signs on 5 and 20 will shift the vertex					
	down and left.					
B.	The negative 4 indicates the parabola ope	ns				
down, and the -5 and 20 determine the vertex, which is the same as in the given						
					parabola.	
C.	Adjusting the -5 to +5 shifts the parabola					
	left. In addition, adjusting the +20 to -20					
	shifts the parabola down.					
D.	Reversing the -5 to +5 will shift the parabo	la				
	to the left, so the vertex will change.					
Standards:						
	CCSS.Math.Content.HSF-BF.B.3					
5 The parent function for a quadratic is represented						
by $f(x) = x^2$.						
Drag and drop the "X" into each box that						
represents the transformation of the function from						

the parent function $f(x) = x^2$. A function may have

more than one transformation. Web Only Interaction

Directions: Answer the following question(s).

N F T	Master ID:2552986 Revision:1Rubric:1 Point(s)This item is worth 2 points, with partial credit.								
The correct response is:									
	Function	Vertical Translation	Horizontal Translation	Vertical Reflection					
	$f(x) = (x - \frac{2}{5})^2$		x						
	$f(x) = (x + 10)^2 - 1$	x	x						
	$f(x) = x^2 + 4$	x							
	$f(x) = -(x-7)^2$		x	x					
Standards: CCSS.Math.Content.HSF-BF.B.3									