Directions: Answer the following question(s).

1 Vladmir sketches the graph of the function $f(x)=\frac{1}{2}(x+6)^{2}-3$ as shown below.

He then translates this function 11 units to the right and 4 units down to obtain the new function $g(x)=\frac{1}{2}(x-h)^{2}+k$. What are the integer values for h and k ?

Use the drop-down menus to choose the correct values of h and k.
Web Only Interaction

Master ID Rubric:	2115785 Revision: Point(s)
This is the result of first noting that because $f(x)=(1 / 2)(x+6)^{2}-$ 3 is expressed in vertex form, $f(x)$ has a vertex at $(-6,-3)$. Because $g(x)$ is formed as a result of translating $f(x) 11$ units to the right and 4 units down, the new vertex is located at $(-6+11$, $-3-4)$ or $(5,-7)$. The vertex form of a quadratic equation is given as $g(x)=a(x-h)^{2}+k$, where the vertex is given by (h, k) Therefore for $g(x), h=5$, and $k=-7$.	
Standards: CCS	Content.HSF-BF.B. 3

2 This equation describes function h.

$$
h(x)=\frac{1}{2} x-4
$$

The graph of function h is translated 2 units in a negative y-direction to form function j. Write an equation to describe function j. Show your work and explain your answer.

Master ID:	2115767 Revision:	4
Rubric:	2 Point(s)	

2 The response is correct and complete. A sample 2point response is shown below. Accept a correct answer with appropriate work and a complete explanation.

Sample Correct Answer:
To find the equation, subtract 2 from $h(x)$.
$j(x)=h(x)-2 \rightarrow \frac{1}{2} x-4-2 \rightarrow \frac{1}{2} x-6$
$j(x)=\frac{1}{2} x-6$
1 The response is partially correct. This level may include a correct answer with insufficient work or an insufficient explanation, or an incorrect answer based on a minor error.
$0 \quad$ The response is incorrect or there is no response.
Standards:
CCSS.Math.Content.HSF-BF.B. 3

Directions: Answer the following question(s).

3 Pedro drew the graph of $y=4(x-7)^{2}+3$. How should he transform that graph to produce the graph of $y=4(x-12)^{2}+3$?
A. He should shift it 5 units to the left.
B. He should shift it 5 units down.
C. He should shift it 5 units up.
D. He should shift it 5 units to the right.

Master ID:	308950 Revision:	3
Correct:	D	
Rationale:		

A. this shift produces the graph of $y=4(x-2)^{2}$ +3 .
B. This shift produces the graph of $y=4(x-7)^{2}$ - 2.
C. This answer produces the graph of $y=4(x-$ $7)^{2}+8$.
D. Changing -7 to -12 in this equation shifts the graph of the parabola 5 units to the right.
Standards:
CCSS.Math.Content.HSF-BF.B. 3

4 Which equation represents a parabola with the same vertex as $y=4(x-5)^{2}+20$ but that opens in the opposite direction?
A. $y=-4(x+5)^{2}-20$
B. $y=-4(x-5)^{2}+20$
C. $y=4(x+5)^{2}-20$
D. $y=4(x+5)^{2}+20$

Master ID:	308948 Revision:	3
Correct:	B	

Rationale:
A. The -4 inverts the parabola, but adjusting the signs on 5 and 20 will shift the vertex down and left.
B. The negative 4 indicates the parabola opens down, and the -5 and 20 determine the vertex, which is the same as in the given parabola.
C. Adjusting the -5 to +5 shifts the parabola left. In addition, adjusting the +20 to -20 shifts the parabola down.
D. Reversing the -5 to +5 will shift the parabola to the left, so the vertex will change.
Standards: CCSS.Math.Content.HSF-BF.B. 3

5 The parent function for a quadratic is represented by $f(x)=x^{2}$.

Drag and drop the " X " into each box that represents the transformation of the function from the parent function $f(x)=x^{2}$. A function may have more than one transformation.
Web Only Interaction

Directions: Answer the following question(s).

Master ID:	2552986 Revision:	1
Rubric:	1 Point(s)	

This item is worth 2 points, with partial credit.
The correct response is:

Function	Vertical Translation	Horizontal Translation	Vertical Reflection
$f(x)=\left(x-\frac{2}{5}\right)^{2}$		\mathbf{x}^{2}	
$f(x)=(x+10)^{2}-1$	\mathbf{x}	\mathbf{x}	
$f(x)=x^{2}+4$	\mathbf{x}		
$f(x)=-(x-7)^{2}$		\mathbf{x}	\mathbf{x}

Standards:
CCSS.Math.Content.HSF-BF.B. 3

