Directions: Answer the following question(s).

1 Mark is asked to find the maximum value of the function shown.

$$
f(x)=-x^{2}+4 x+4
$$

He decides to complete the square to reveal the maximum value. Which shows the function Mark created, and the maximum value of this function?
A. $f(x)=(x-2)^{2}+4$, and the maximum value of $f(x)$ is 4 .
B. $\quad f(x)=-(x-2)^{2}$, and the maximum value of $f(x)$ is 0 .
C. $f(x)=-(x-2)^{2}+8$, and the maximum value of $f(x)$ is 8 .
D. $f(x)=-(x-2)^{2}-4$, and the maximum value of $f(x)$ is -4 .

Master ID:	307985 Revision:	5
Correct:	C	

Rationale:
A. This is the result of completing the square to get the function into the form $-(x-h)^{2}+k$, but the constant term (4) is left out in the first step.
B. This is the result of completing the square to get the function into the form $-(x-h)^{2}+k$, but the squared term (4) is subtracted instead of added.
C. This is found by solving $f(x)=-\left(x^{2}-4 x\right)+4$ $\rightarrow f(x)=-(x-2)^{2}+4+4 \rightarrow f(x)=-(x-2)^{2}$ +8 . The vertex of the parabola opening down is $(2,8)$, making the maximum 8.
D. This is the result of completing the square to get the function into the form $-(x-h)^{2}+k$, but the constant term (4) is left out, and the value needed to complete the square (4) is subtracted instead of added.
Standards:
CCSS.Math.Content.HSA-SSE.B.3.b

2 What is the maximum value of the function?

$$
g(y)=-y^{2}+12 y+45
$$

A. 81
B. 9
C. 189
D. -99

Master ID:	307982 Revision:	4
Correct:	A	

Correct:
A
Rationale:
A. Convert the equation to vertex form by completing the square. Rearrange the equation as $g(y)=-\left(y^{2}-12 y\right)+45$, and then complete the square: $g(y)=-\left(y^{2}-12 y\right.$ $+36)+45+36 \rightarrow g(y)=-(y-6)^{2}+81$.
This is the standard vertex form of the equation. It shows that a maximum of $g(y)=$ 81 occurs where $y=6$.
B. This results from subtracting the term $(12 / 2)^{2}$ from 45 instead of adding it.
C. This is the result of squaring 12 (the coefficient of the y term) instead of 12/2, before adding it to 45 .
D. This is the result of squaring 12 (the coefficient of the y term) instead of 12/2, and then subtracting that from 45.
Standards:
CCSS.Math.Content.HSA-SSE.B.3.b
3 Enter an equation for the line of symmetry for the function defined by $f(x)=4 x^{2}+8 x+3$.

Use the on-screen keyboard to type your answer in the box below.
Web Only Interaction

Master ID: 2473300 Revision: 1 Rubric: $\quad 1$ Point(s)
The line of symmetry is $\boldsymbol{x}=\mathbf{- 1}$.
This line is a vertical line through the vertex, found as follows:
$x=\frac{-b}{2 a}=\frac{-8}{8}=-1$
Standards:
CCSS.Math.Content.HSF-IF.C. 8 CCSS.Math.Content.HSF-IF.C.8.a

Directions: Answer the following question(s).
4 April completed the square to find the minimum value of the function $f(x)=x^{2}+6 x+7$. Which value did she place in the blank?

$$
f(x)=(x+3)^{2}+7+\left({ }_{-}\right)
$$

A. 9
B. -9
C. -3
D. 3

Master ID:

307981 Revision:
4
Correct: B
Rationale:
A. This results from adding $\left(\frac{b}{2}\right)^{2}$ to the equation twice instead of adding and subtracting it.
B. To complete the square when the coefficient of the x^{2} term is 1 , add the quantity $(b / 2)^{2}$ to make a perfect square, and then subtract it to preserve the equality. The solution is $f(x)$ $=x^{2}+6 x+9+7-9 \rightarrow f(x)=(x+3)^{2}+7-$ 9. The 9 is subtracted as the 9 was added.
C. This results from adding and subtracting b instead of $\left(\frac{b}{2}\right)^{2}$.
D. This results from adding b to the equation twice instead of adding and subtracting $\left(\frac{b}{2}\right)^{2}$.

Standards:
CCSS.Math.Content.HSA-SSE.B.3.b

5 Sandra wants to find the point on the graph where the minimum value of this equation occurs.

$$
y=x^{2}-6 x+8
$$

She completes the square to find the minimum value. Which function is equivalent to the original function, and at what point does the minimum value occur?
A. $y=(x-3)^{2}-1$, with the minimum at $(3,-1)$
B. $y=(x-3)^{2}-1$, with the minimum at $(-3,-1)$
C. $y=(x-3)^{2}+17$, with the minimum at $(-3,17)$
D. $y=(x-3)^{2}+17$, with the minimum at $(3,-17)$

Master ID:	307978 Revision:
Correct:	A

Rationale:
A. This is the result of completing the square to put the function in the vertex form $y=(x-$ $h)^{2}+k$. In this form, the vertex of the quadratic maximum or minimum corresponds to (h, k). To complete the square, add and subtract the term $(6 / 2)^{2}$ to the function as follows: $y=x^{2}-6 x+9+8-$ $9 \rightarrow y=(x-3)^{2}+8-9 \rightarrow y=(x-3)^{2}-1$. The point of the minimum value is $(3,-1)$.
B. This results from correctly completing the square, but using $-h$ rather than h from the vertex form $y=(x-h)^{2}+k$. The minimum value occurs at the point (h, k).
C. This results from completing the square incorrectly, adding a 9 rather than subtracting it. The minimum point is also incorrect.
D. This results from completing the square incorrectly, adding a 9 rather than subtracting it.
Standards:
CCSS.Math.Content.HSA-SSE.B.3.b

Directions: Answer the following question(s).

6 The temperature, in Celsius, of a certain substance during a chemistry experiment at time t minutes is modeled by the expression below.

$$
t^{2}-15 t+54
$$

Which expression is equivalent to the above expression and BEST reveals the minimum temperature reached by the substance?
A. $(t+6)(t+9)$
B. $(t-7.5)^{2}+2.25$
C. $(t-7.5)^{2}-2.25$
D. $(t-6)(t-9)$

Master ID:	2114850 Revision:	3
Correct:	C	

Rationale:
A. This is the result of making sign errors in the factored form of the given expression.
B. This is the result of making a sign error in the constant term outside the parentheses when completing the square. Although this expression does reveal the 7.5 , it is not equivalent to the given expression.
C. $t^{2}-15 t+54=t^{2}-15 t+(-15 / 2)^{2}+54-(-$ $15 / 2)^{2}=(t-7.5)^{2}+54-56.25=(t-$ $7.5)^{2}-2.25$, which clearly reveals that the minimum temperature reached is $-2.25^{\circ} \mathrm{C}$.
D. This is the result of selecting an expression that is equivalent to the given expression but that does not best reveal the minimum temperature reached.
Standards:
CCSS.Math.Content.HSA-SSE.B.3.b
7 Enter an equation for the line of symmetry for the function defined by $f(x)=2 x^{2}-20 x-7$.

Use the on-screen keyboard to type your answer in the box below.
Web Only Interaction

Master ID: 2473299 Revision: 1
Rubric: $\quad 1$ Point(s)
The line of symmetry is $x=5$.
This line is a vertical line through the vertex, found as follows:
$x=\frac{-b}{2 a}=\frac{20}{4}=5$
Standards:
CCSS.Math.Content.HSF-IF.C. 8
CCSS.Math.Content.HSF-IF.C.8.a

