Directions: Answer the following question(s).

- 1
- Mark is asked to find the maximum value of the function shown.

$$f(x) = -x^2 + 4x + 4$$

He decides to complete the square to reveal the maximum value. Which shows the function Mark created, and the maximum value of this function?

- A. $f(x) = (x 2)^2 + 4$, and the maximum value of f(x) is 4.
- B. $f(x) = -(x-2)^2$, and the maximum value of f(x) is 0.
- C. $f(x) = -(x-2)^2 + 8$, and the maximum value of f(x) is 8.
- D. $f(x) = -(x-2)^2 4$, and the maximum value of f(x) is -4.

Master ID:	307985 Revision:	5
Correct:	С	
Rationale:		

- A. This is the result of completing the square to get the function into the form $-(x h)^2 + k$, but the constant term (4) is left out in the first step.
- B. This is the result of completing the square to get the function into the form $-(x h)^2 + k$, but the squared term (4) is subtracted instead of added.
- C. This is found by solving $f(x) = -(x^2 4x) + 4$ $\rightarrow f(x) = -(x - 2)^2 + 4 + 4 \rightarrow f(x) = -(x - 2)^2$ + 8. The vertex of the parabola opening down is (2, 8), making the maximum 8.
- D. This is the result of completing the square to get the function into the form $-(x h)^2 + k$, but the constant term (4) is left out, and the value needed to complete the square (4) is subtracted instead of added.

Standards:

CCSS.Math.Content.HSA-SSE.B.3.b

2 What is the maximum value of the function?

$$g(y) = -y^2 + 12y + 45$$

- A. 81
- B. 9
- C. 189
- D. –99

Master ID:	307982 Revision:	4		
Correct:	А			
Rationale:				
A Convert the equation to vertex form by				

- A. Convert the equation to vertex form by completing the square. Rearrange the equation as $g(y) = -(y^2 - 12y) + 45$, and then complete the square: $g(y) = -(y^2 - 12y) + 36 + 45 + 36 \rightarrow g(y) = -(y - 6)^2 + 81$. This is the standard vertex form of the equation. It shows that a maximum of g(y) =81 occurs where y = 6.
 - B. This results from subtracting the term $(12/2)^2$ from 45 instead of adding it.
- C. This is the result of squaring 12 (the coefficient of the *y* term) instead of 12/2, before adding it to 45.
- D. This is the result of squaring 12 (the coefficient of the y term) instead of 12/2, and then subtracting that from 45.

Standards:

CCSS.Math.Content.HSA-SSE.B.3.b

<u>3</u> Enter an equation for the line of symmetry for the function defined by $f(x) = 4x^2 + 8x + 3$.

Use the on-screen keyboard to type your answer in the box below.

Web Only Interaction

Master ID:2473300 Revision:1Rubric:1 Point(s)The line of symmetry is x = -1.This line is a vertical line through the vertex, found as follows: $x = \frac{-b}{2a} = \frac{-8}{8} = -1$ Standards:CCSS.Math.Content.HSF-IF.C.8CCSS.Math.Content.HSF-IF.C.8, a

Continue: Turn to the next page. Page 1

Directions: Answer the following question(s).

April completed the square to find the minimum value of the function $f(x) = x^2 + 6x + 7$. Which value did she place in the blank?

$$f(x) = (x+3)^2 + 7 + (_)$$

- A. 9
- В. –9
- С. –3
- D. 3

Master ID: 307981 Revision: 4 Correct: B

Rationale:

- A. This results from adding $\left(\frac{b}{2}\right)^2$ to the equation twice instead of adding and subtracting it.
- B. To complete the square when the coefficient of the x^2 term is 1, add the quantity $(b/2)^2$ to make a perfect square, and then subtract it to preserve the equality. The solution is f(x)= $x^2 + 6x + 9 + 7 - 9 \rightarrow f(x) = (x + 3)^2 + 7 - 10^{-10}$
 - 9. The 9 is subtracted as the 9 was added.
- C. This results from adding and subtracting *b* instead of $\left(\frac{b}{2}\right)^2$.
- D. This results from adding *b* to the equation twice instead of adding and subtracting $\left(\frac{b}{2}\right)^2$.

Standards:

CCSS.Math.Content.HSA-SSE.B.3.b

5 Sandra wants to find the point on the graph where the minimum value of this equation occurs.

$$y = x^2 - 6x + 8$$

She completes the square to find the minimum value. Which function is equivalent to the original function, and at what point does the minimum value occur?

- A. $y = (x 3)^2 1$, with the minimum at (3, -1)
- B. $y = (x 3)^2 1$, with the minimum at (-3, -1)
- C. $y = (x 3)^2 + 17$, with the minimum at (-3, 17)
- D. $y = (x 3)^2 + 17$, with the minimum at (3, -17)

Master ID:	307978 Revision:	4
Correct:	А	
Rationale [.]		

- A. This is the result of completing the square to put the function in the vertex form $y = (x - h)^2 + k$. In this form, the vertex of the quadratic maximum or minimum corresponds to (h, k). To complete the square, add and subtract the term $(6/2)^2$ to the function as follows: $y = x^2 - 6x + 9 + 8 - 9 \rightarrow y = (x - 3)^2 + 8 - 9 \rightarrow y = (x - 3)^2 - 1$. The point of the minimum value is (3, -1).
- B. This results from correctly completing the square, but using -h rather than h from the vertex form $y = (x h)^2 + k$. The minimum value occurs at the point (h, k).
- C. This results from completing the square incorrectly, adding a 9 rather than subtracting it. The minimum point is also incorrect.
- D. This results from completing the square incorrectly, adding a 9 rather than subtracting it.

Standards:

CCSS.Math.Content.HSA-SSE.B.3.b

1

Directions: Answer the following question(s).

6 The temperature, in Celsius, of a certain substance during a chemistry experiment at time *t* minutes is modeled by the expression below.

$$t^2 - 15t + 54$$

Which expression is equivalent to the above expression and BEST reveals the minimum temperature reached by the substance?

A.
$$(t+6)(t+9)$$

B.
$$(t - 7.5)^2 + 2.25$$

C.
$$(t - 7.5)^2 - 2.25$$

D.
$$(t-6)(t-9)$$

Master	r ID: 2114850 Revision:	3
Correc	xt: C	
Ration	ale:	
A.	This is the result of making sign errors in the	ne
	factored form of the given expression.	
В.	This is the result of making a sign error in	
	the constant term outside the parentheses	
	when completing the square. Although this	
	expression does reveal the 7.5, it is not	
C	equivalent to the given expression.	
C.		—
	$(15/2)^2 = (t - 7.5)^2 + 54 - 56.25 = (t - 56)^2 + 54 - 56$	
	$(7.5)^2 - 2.25$, which clearly reveals that the	•
	minimum temperature reached is -2.25 °C	
D.	This is the result of selecting an expression	۱
	that is equivalent to the given expression b	ut
	that does not best reveal the minimum	
	temperature reached.	
Standa		
(CCSS.Math.Content.HSA-SSE.B.3.b	

T Enter an equation for the line of symmetry for the function defined by $f(x) = 2x^2 - 20x - 7$.

Use the on-screen keyboard to type your answer in the box below.

Web Only Interaction

Master ID:	2473299 Revision:
Rubric:	1 Point(s)
The line of symmetry is $x = 5$.	

This line is a vertical line through the vertex, found as follows:

$$x = \frac{-b}{2a} = \frac{20}{4} = 5$$

Standards:

CCSS.Math.Content.HSF-IF.C.8 CCSS.Math.Content.HSF-IF.C.8.a